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SERVICE-ADAPTIVE MULTI-TYPE REPAIRMAN PROBLEMS

Donald P. Gaver,

Naval Postgraduate School,

Monterey, CA 93943

John A. Morrison,

AT&T Bell Laboratories,

Murray Hill, NJ 07974

Rogerio Silveira

Centre de Analises de Sistemas Navais (CASNAV)
Avenida Pasteur 480, Fdas.

Rio de Janeiro, RJ 22290, Brazil

Abstract. The classical "repairman problem," cf. Feller (1967) is generalized to

consider r failure-prone machine types, each type having its own individual

failure rate and also repair rate. Each failed machine joins its type queue, and

is repaired by a single server. Several dynamic service priority schemes are

considered that approximate first-come first-served, longest-line first, and

least-available first. A heavy-traffic asymptotic analysis determines

approximations to the time-dependent mean and covariance of individual

type queue lengths, and shows that the marginal joint distribution of queue

lengths is approximately Ornstein-Uhlenbeck. Numerical illustrations of

approximation accuracy are provided, as are suggested applications to

computer performance and manufacturing systems analysis.
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1. INTRODUCTION

The classical "repairman problem" described by Feller (1967), Cox and

Smith (1961), and in all later texts on applied probability, is a well-motivated

example of a finite Markov chain in continuous time. Not only is it a

plausible first model for the productivity of a group of similar machines that

are subject to failure and susceptible to repair by one (or more) repairmen, as

described by Feller and subsequent authors, but it provides initial rough

models for prototypical computer science situations such as multiprocessing

and polling. The purpose of this paper is to extend the basic simple single-

type (of machine, for instance) Markov repairman model to various multi-

type models, i.e., ones in which several types of items (e.g., machines or

computer system users) become applicants for service. These then may join a

single queue and be serviced in arrival order: first-in, first-out or FIFO.

Alternatively, the service applicant types can be individually queued, and a

service assignment can be made from one of these queues at a suitable

instant, such as at the end of a service; evaluation of the latter dynamic

complete-service assignment rules are emphasized in this paper. Note

parenthetically that in principle there need be no restriction to choice from

among the waiting types only when service is completed: preemption at some

intermediate time can be an effective tactic, particularly if setup or switchover

times or costs are not excessive, in order to focus attention on a machine type

that momentarily has a long queue and thus is in excessively short supply.

One limit of preemption is some form of processor sharing, in which the

server's tendency to service a particular type among service applicants

depends moment by moment upon lengths of queues, or urgency. In some
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contexts switching back and forth between partially completed services is

severely penalized by substantial switchover times, which reduces the

attractiveness of the tactic. It is even possible that such switching can lead to

bistability, an elementary form of chaos; see Jaiswal, et al. (1990). We do not

consider such switching models in the present paper.

In what follows we first describe our mathematical model, paying

particular attention to a handy probabilistic device for representing

purposeful and adaptive selection of a new service incumbent just after the

previous one completes service and leaves. An important example could be

the simple practice of selecting from the longest queue; another is selecting

from the queue of items that is least available. We then introduce a state

space scaling that is appropriate when the number of each machine type

grows large and the system is in heavy traffic, so the server is essentially

never idle. Asymptotic expansions are introduced in terms of a large

parameter, a; a is of the order of magnitude of the number of machines.

These expansions reveal the approximate time-dependent means of the

lengths of the queues awaiting processing, and also the time-dependent joint

characteristic function (ch.f.) of the random noise terms that characterize

departures from the mean. The latter approaches the ch.f. of a multivariate

Ornstein-Uhlenbeck process; see Arnold (1974). The scaling studied is the

same as that of McNeil and Schach (1973) but the present results pertain

specifically to a multi-type queueing system's transient behavior. Finally,

numerical results computed from the model by numerical solutions of

systems of differential equations are compared to simulations, with good

agreement exhibited. The computational time for the presently described
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analytical-numerical procedure is a small fraction of that required to conduct

a comparable simple simulation, suggesting its practicality and usefulness

when appropriate.
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2. THE MODEL

In this section we describe the initial basic model for a multi-type

repairman problem with adaptive service.

a) Demands

There are Kj items ("machines") of type ;', each of which, when operating,

fail independently at Markovian rate Ay; ; = 1, 2, ..., r. In fact, the failure rate

can even be smoothly time-dependent, with failure rate at time (not age) t

equal to Xj(t), but we emphasize discussion of the time-homogeneous

situation here.

b) Service

There is a single server. When an item of type j is undergoing service its

repair process is Markovian with rate Vj. Again, time-dependence is

allowable. We only consider the case of heavy traffic, which means that

]jj£. KjXj / V; >1 when rates are constant. This assumption assures that

queues for all items form soon after the process begins; the queues grow

towards steady-state levels and fluctuate but essentially never dissipate.

c) Service Discipline; Models for Adaptation

Servica is organized by assembling different demand types in their own

queues. Let Nj(t) denote the number of items of type; awaiting service at

time t; if a type ;' item happens to be undergoing service it is also included in

the count ."or Nj(t). Let I(t) be an indicator variable; 7(0 = i (i = 1, 2, ..., r) means

that an item of type i is in service at time t.

•ervice-adaptive^/22/91,12:01 PM



When an item of an)- type completes service its replacement is modeled

as if selected by a random device: given that service is completed at time t

and the number of items in the various queues is N_(t) = n_ then with

probability
q.j

(n_, K_, w_(t)) the new server incumbent at t is of type /'. The

function
qfc)

is to be chosen so as to model desired service protocols; it is, in

particular, assumed to be homogeneous of degree zero in n and K. We select

for study specific forms that represent, for example, (i) first-in, first-out (FIFO)

service selection, (ii) longest-line-next (LOLIN), (iii) least-available-next

(LAIN) or any weighted combination thereof. Here are the explicit forms

chosen; for ;' = 1, 2, ..., r

(0 FIFO: qj(n(t),K,wlt)) = '"
'

l

(2.1)

InAttfwAt)
(ii) LOLIN: qj(n(tlK^t))= \' ' ' ,p»l (2.2)

(Kj-rijU))
P
Wj(t)

(iii) LAIN:
qj

(n(t) f K f w(t)) = _V ,
'
-*F* (

2'3)

k

where (wjQ)) = w_(t) is a set of positive weights and p is a positive tuning

constant (suitably chosen to be "large, but not too large"). Note that each

specific function is the ratio of homogeneous functions, differentiable in rtj

and also Kj. To motivate (2.3), it is clear that if, say, the availability of item 1,

namely K\-n\ is less than that of any other item /*1, then its anti-availability

(K\-n\)~ is greater than that of any other, and the difference is enhanced by
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increasing p in (K\-n\)~
p

; consequently the qj of (2.3) increases controllably the

probability of choosing item j for next service if it is least available. In

principle ambiguity exists if h*(0 = JC* for more than one machine; we do not

consider this unlikely event. An analogous argument holds for (2.2). It has

long been understood that (2.1) with equal weights already well-approximates

FIFO; its use eliminates the need for a far more elaborate state space to

describe true FIFO. See Gaver and Morrison (1991) for a treatment of our

FIFO model by somewhat different methods.

Although we model the selection of the next item to be served by a

random process governed by qj the intention is that this model emulate

deterministic selection. Modeling by a probability that is a sufficiently smooth

(differentiable) function of state variables nfit) permits computation of

asymptotic expansions that conveniently characterize measures of the

probabilistic fluctuations of those state variables; in particular the

approximate variance- covariance function of N_{t). It will be shown by

simulation for specilic examples that numerical agreement of our

probabilistic analytical models is very close to the corresponding deterministic

selection results. The computing time for obtaining the numerical results

from the enalytical model is, however, a small fraction of the time to obtain

the simulation results. This allows considerable elaboration of the present

basic model; for some details see Gaver et al. (1991).

There follows a discussion of application areas for our class of models.

Adaptive Polling

Suppose a single processor, e.g., computer or database, receives tasks from

r different classes of input devices which we will call terminals. When a
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terminal in class ; makes a demand it remains quiescent until that demand is

served, after which it becomes active again at rate h. The requests from each

terminal individually queue for service at the processor; when a request or

task is accepted by the (single) processor it is served to completion; the server

is said to poll terminal class queues for the next request or task to be served

when completion occurs. The analysis herein permits assessment of various

polling selection policies, such as one that dynamically favors the longest

queue (equally-weighted LOLIN) and thus tends to equalize queue lengths

and waits for service. If the terminal classes were to be information sources

in a military command-control-intelligence (C 2I) system, and requests were

database updates, the priority weights, Wj, could be adjusted to account for the

current credibility of inputs by classes of terminals; the most credible would be

processed first in times of stress and heavy usage, as during combat. It is

easily possible to adjust the service policy to that of class-preferential

processor sharing, see Gaver and Jacobs (1986) and Morrison (1987) for similar

asymptotic studies.

8
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Why LAIN? Promotion of Item-Cooperative Service in Reliability or

Manufacturing Applications

Several real situations call for the use of the least-available-next (LAIN)

policy as at least attractive, if possibly not demonstrably optimal. Consider the

modeling of adaptive service to achieve

System Availability

First, suppose that exactly one of each item type is needed in order to

render fully operational a platform system such as a fully-equipped aircraft.

Then the least-available item type controls the number of platforms available

for action. In case there are fewer of each item type than there are platforms

then all available platforms will be in action at any time and the simple

process described above is in play and its analysis is appropriate. For a more

detailed description of the aircraft availability process see Gaver et al. (1991).

Manufacturing: Stage-Wise Production

Second, suppose instead that each item type represents a machine that is a

stage in some sequential manufacturing process. Manufacturing, or other

processing, proceeds in successive stages, starting at a bank of (available)

machines of type 1, the output of that stage proceeding to, and through,

machines of type 2, etc., through machines of type r at Stage r. Machines are,

however, susceptible to failure and only those that have not failed (are

available) are productive. Provided that all machine banks are about equally

productive, so that there are no production bottlenecks in the absence of

failures, it is of interest to schedule repairs to maintain that balance when

realistic failures do occur. Certainly the LAIN policy has the desired effect of

•ervice-adaptiv^/^ /91 ,12:01 PM



maintaining equality among machine types available. A generalization

might well be to induct for next service that machine type that has the largest

queue of in-process production items awaiting that particular machine bank.

10
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3. MARKOV STRUCTURE AND ASYMPTOTIC ANALYSIS

It is clear from the assumptions made that the process (N.(f), /(f)} = (Ni(f),

N2(t), ... N r(t), /(f)) is Markov in continuous time with a finite discrete state

space. If all parameters are actually independent of time such a process will

ultimately reach steady-state, exhibiting a stationary distribution. But explicit

calculation of that distribution, or of the distribution at any finite time, f, is an

involved exercise. Special efforts would be required for system design and

operation. The same is true if simulation is used to study the behavior of

various scheduling options such as FIFO, LOLIN, or LAIN. Hence the

approach of approximating the behavior of the above multivariate process by

the sum of a deterministic mean and a continuous-state-space diffusion

process with Gaussian marginal distributions is attractive. McNeil and

Schach (1973) carried out a comparable program for a wide variety of models,

but our approach and results differ from theirs in various respects; in

particular our process is multivariate.

Asymptotic Analysis

Let

Pe {n,t) = P[N1 (t)
= nv ...N

r
(t) = nr ,I{t)

= i} = P{N{t) = n,l{t) = t], (3.1)

where initial conditions have been suppressed. Then standard arguments

lead to the forward Kolmogorov equations

d-Pl(nA)+^X j
{Kr n

iyt {n,t)+vl
Pl (n,t) =

r

^(Xy-wy + lJp^w-e^tj+^feSi^ls+S//^ (
3 - 2

)

;=1 ;=1

11
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for «/* 0, n * e/ and < n < k, where e^ = (0, 0, ..., 1, 0, 0), i.e., 1 occurs only in

the j
th entry of vector e

;
. We do not include the special equations appropriate

when n = and n = ej since the heavy traffic assumption renders this

unnecessary.

Scaling

For a large value a, i.e., a»l we assume Kj= accj, Vj = a^ij. Consider the

transformed variables

Vj(t) = {N
j
(t)-a^{t))/4~a / j = \,2,...J (3.3)

wherein /Jy(f) are deterministic functions to be determined; afijit) aElNKt)].

Define the characteristic function (ch.f.) of Vjit) for given a as

wl {y,t;a)=E{exp(iyV(t));I(t) = t\

= £exp[iy(«-ii«0)/ Tfcfo&t). (3.4)

(n)

The objective will be to derive asymptotic expansions in powers of l/ysi that

characterize the mean function £(f) = (p\(t), pi(t), ..., /? r(0) and also

02 = (co\, g>2, •••, cor); from the latter variances and covariances of queue lengths

can be deduced. From the limiting characteristic function it may be deduced

that the process V_(t) is approximately multivariate Ornstein-Uhlenbeck, with

parameters specific to the particular scheduling rule in force.

Preliminaries

According to its definition, (3.4),

»iM = le^-^^P^t) - Xe*^W) (3-5)

(n) (n)

12
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where

2(W/0 = (3-«W)/V«- (3.6)

Now multiply (3.2) by e
iys

- and sum on n. Note that differentiation of (3.5)

gives

¥=-^y^ +X^(«,0,
dt -dt

in)
dt

(3.7)

and that the scaling (3.6) implies

(s) ;=i ;'=i(»)

dft)

(3.8)

so from the Kolmogorov equation

d(0(

dt

dp '

df

8<y,
K.-fi^ + /Vfl

—

--apj(t)o)(
J

ty
}

+ aH(CQ£ =

1*1 Kpt + iJi&L-MPpt ^/^ +£e^/fe&^ti)yP/ (
S + s/#

A (3.9)

Expand ^y by noting that in representation (2.1)-(2.3) numerator and

denominator are homogeneous functions, so cancellation of V# provides

1j(n,K,w(t)) = <lj(m«Mt)) +^ 5>*^ + 0(1 / a). (3.10)

Now insert (3.10) into the final sum of (3.9) to get

13
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d(Ot r dp v>
dt H

aa;(Dt + iy[a—-t- apj(t)co/ + fl|i/OJ/ =

Hi
;=i L

3ft)>

accjCQi + iJa—£--af5j{t)(0t ,

%yjslTa

+«fc(g,«,«>) • I^»;^""- i^5>; £^<f*/'^
7=1

omitting terms of order 1/a in the expansion of
fy.

Next divide through (3.11)

by a and note that

MA-tti^^
H ;=1L

*>/

^ ^ 3^ 9©/ -iy./>£
+^£ i£1

Wkdyk

e
iy//^ +4 Py A,^fi-^ /

^l = o(i/a).(3.i2)

^;

Expand the exponentials to find

;=1
V /=lL J

+ 0(1/ a). (3.13)
v ^i dco

i

If (3.11) is summed on / then, noting that since X[-i^/(^'—

)

= ^ so

S/-i^/ /% - 0/ efc ' there results

5>/

(3.14)

14
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The fact that this summed equation holds follows directly from the summed

Kolmogorov equation; details are omitted. Now expand the exponentials in

powers of \/ya\.o find

1
+-<

a
l/=* H

= o(l/a3/2
). (3.15)

Expansions

Next introduce the asymptotic expansion

ffli(y,*;«) = 4%*)+^»J%*)+i«i%*)+... (3.16)

Insert (3.16) into (3.13) and isolate terms of O(l):

,(0) ,(0)_

thence, with

(3.17)

we obtain

<4°> = i^«»(y4 (3.18)

In the summed equation (3.15) we have

15
•evice-adaptlve^ /22/91,l 2:01 PM



5>;
H L

^0) +
w=i

(0)

\"\

J).

= 0. (3.19)

Put

(3.20)

then (3.19) becomes

2y/
;=1 L

*j
+

dPj_

dt
-Xfa-pMcp fl(°) = 0,

which is satisfied if

dpj

dt
= */(«; -/*/)-<?/ /|P

= X
j
(a

j
-p

j
)-n

j

(

I/-!*/^/,
(3.21)

The solution of (3.21) provides the initial approximation to the mean length

of the/'"1 queue: E[Nj(t)] ~ apj(t).

Note that ^
(0)

(i/,n = X/-i (U/
= V^ [yA provides the leading term in

the asymptotic expansion for the ch.f. of V_{t), the stochastic noise term that

perturbs the mean and that % (0,t) = 1.

Now return to (3.13) and isolate terms of order \/^[a to find that

,(1)
nt<t>t-mY,»i<°j --'Z^j

dpj

3 (0)

(o) L v a^ dc
°J

;=1L
a-ifa-'i)w(0).

(3.22)

16
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replace coy by
(fy

/ fij^Q^ and utilize ]£'
=1 <fy

= * and (321 > to find

,(i) .0)__;

7=1

^ fl(0)
+'J-rgw- (3 - 23)

In order to make use of the summed equation, (3.15), first put Q^'\y f t\ =

5^
r

/i.«J (y,t) in (3.22), divide through by /i/ and sum to obtain

fffl^-foW-i
/=!

a<? 8fl(°)

9
R
M°»I

in which

jSa& ty* A V) jt=i

k-2£.i*//*?

^yjt (3.24)

(3.25)

Multiply (3.23) by y/ and sum:

X XX
/=! jj><Hfr"'°'

u'=l ;

v /= i
m/

jt=]

(3.26)

Now utilize (3.26) and (3.24) in the summed equation, (3.15), and put

0)
(3.27)

to obtain

17
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l< «(1) 2>y<-<-
/=ljt=1 oPk °Vk

^2

<P i=\ v-t ;=1

-i*
y'

=1 <PH
<PcP)-i t&&*»t~-z»t~

lW

k=\ (P Jt=l
-l/J

(3.28)

;=1 ;=1
z
U=l J ;=1 ^=1 aV) ) l=\

m

= 0.

The terms designated by and by cancel, leaving an equation

involving only the first terms in the expansion (3.16 ). Further, in view of

(3.18), the latter can be reduced to an equation involving only Q (y_,i).

If we define

Sj(p,a) = qj{P,cc)/(p(p,a), r{p,a) = R(p,a)/ <p(p,a) (3.29)

and recall, z^ \y>t) = <p(P><x)d°\y*t) then (3-28 ) is expressed as follows:

a* (0)

dt

r
a (0) rr ds a (0)

L
)=\ j=\k=\j=\k=\l^)

1

--r{p,a) :

;
sJty; yjt

(3.30)

,(0)

Equation (3.30) is recognizable as the partial differential equation satisfied by

the ch.f. of the Ornstein-Uhlenbeck process. This shows that the scaled noise

terms have normal /Gaussian marginal distributions, and permits the

derivation of a system of differential equations for the covariance function of

18
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the stochastic queue lengths. These are obtained by differentiating (3.30) at

y_ = 0: if py/0 is the limiting covariance of Vfjt), V/0), as defined in (3.3), then

1 1

v- y

Hj to

(3.31)

with 5,/= 1 if ; = /, = ii ; # / (Kronecker delta). We have used the fact that

X(0)(0,t) = 1. A first-ord2r correction term to the mean can also be derived, as

can further terms in the asymptotic expansion: if

E[N
;
(0]=flj3

;
(0 + V

;̂
(0 + 0(l)

then

dUt) ' ds;

dt
(3.32)

note that if £;
(0) = 0, / = 1, 2, ..., r, then §;

{f) h 0.

It seems likely that under the normalization chosen the process V_(t)

actually converges weakly to the Ornstein-Uhlenbeck process, but we do not

prove this fact here; see McNeil and Schach (1973) for an early approach to

this issue.

We now turn to a numerical assessment of the quality of the

approximation for the time-dependent mean and standard deviation of

individual queue lengths, and a discussion of the effect of the several service

scheduling rules.

19
i«rvice-adaPtive3/22/91,12:01 PM



4. NUMERICAL RESULTS

The asymptotic results will now be illustrated numerically, and compared

to simulation. Two sample systems will be examined.

EXAMPLE 1: CONFIGURATION AND RATES

Machines

;'
: 1 2 3 4 5

Kf 100 110 120 130 140

K 0.011 0.012 0.013 0.014 0.015

Vf. 3.0 3.0 3.0 3.0 3.0

The following abbreviations identify the various service disciplines and

computational procedures in the tables:

• FCFS,A/S: First Come, First-Served; Analytical Method /Simulation

• LOLIN,A/S: Longest Line Next; Analytical Method/Simulation

• LAIN,A/S: Least Available Item Next; Analytical Method /Simulation

The simulation has been carried out so as to faithfully represent the service

disciplines: FCFS,S literally keeps track of the order of arrival and serves

accordingly, and LOLIN,S and LAIN,S likewise perform as stated when new

service opportunities occur; they occur deterministically. The analytical

procedures utilize the probabilistic schemes described. In all present cases

initial conditions are nominally zero; in order to avoid problems with

indeterminacy of (\-
x
small values of fij(0) were utilized; weights iVj were taken

to be equal. The three times selected to report results essentially cover the

interesting range of temporal variation; the system is nearly in statistical

equilibrium at the final value. Simulations were replicated 500 times; for

details see Pilnick (1989). The typical simulation exercise for a single case, e.g.,
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FCFS,S for all machines required about ten minutes of IBM 3033/4381 time,

while the corresponding analytical-numerical solution was carried out in the

order of a few seconds.

Table 1 allows comparison of the mean and standard deviation

(parentheses) of queue lengths as (a) these measures are computed

analytically-numerically, solving equations (3.20) and (3.26), and (b) by point-

event simulation. It also invites comparison of the effect of the various

disciplines.

Discussion

Figures in Table 1 show that

• For all disciplines employed, and at all times recorded, the analytical-

numerical and simulated means and standard deviations agreed

well. Of course the analytical-numerical computations were
performed in a small fraction of simulation time. Note that the

target p-value (tuning parameter) p = 30 provides numbers closer to

simulation despite the danger of instability associated with very

large p's. Choice of a and of p must be guided by experiment at

present.

• The stochastic variability around the time-dependent mean queue
length, measured by the standard deviations, is always a small

fraction of the mean. The FCFS standard deviations are always

somewhat greater than those for the LOLIN or LAIN policies; these

latter have a natural tendency to equalize queue lengths, both with

respect to means and stochastic fluctuations. Studies not reported

here, Pilnick (1989), suggest that the scaled marginal distribution of

queue length, Vy(0, is close to being normally distributed, as would
be implied by the Ornstein-Uhlenbeck nature of the limiting ch.f.,

(3.30).

• The LAIN policy quickly adapts to equalize the number of un-

queued, or available or idle machines in each group. This feature is

of special interest when one available machine of each type is

needed on a "platform" (e.g., ship, aircraft, etc.) in order that it be

totally mission-ready. For other models and studies in this direction

see Gaver et al., (1991). Note that LAIN is myopic and makes no use

of estimates of parameter values Ay or /iy, or even the number, r, of
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competing machine types. The same general objective should be of

interest if the machine types are components of a sequential

manufacturing process and it is desired to avoid bottlenecks.

TABLE 1

MACHINE SERVICE DISCIPLINES TIMES
100 200 500

FCFS,S 40.5(5.3) 52.4(5.3) 572(5.1)

FCFS,A 40.3(5.2) 52.6(5.3) 57.5(52)

1

LOLlN,S 53.5(3.3) 68.7(3.1) 74.0(32)

LOLIN,A (p = 10)

(p = 30)

50.9(3.7)

53.2(3.7)

653(3.5)

68.0(3.4)

70.8(3.4)

73.5(32)

LAIN,S NA NA NA
LAIN,A (p = 30) 33.1(3.7) 47.9(3.4) 53.5(32)

FCFS,S 47.4(5.5) 60.6(5.7) 655(5.6)

FCFS,A 47.0(5.6) 605(5.6) 65.6(5.4)

2

LOLlN,S 54.3(3.4) 692(3.1) 74.5(33)

LOLlN,A (p = 10)

(p = 30)

53.0(3.9)

54.1(3.6)

67.6(3.7)

68.6(3.4)

73.1(3.6)

74.5(33)

LAIN,S NA NA NA
LA1N,A (p=30) 43.4(3.7) 58.1(3.4) 63.6(32)

FCFS,S 53.8(6.3) 685(5.8) 73.7(6.0)

FCFS,A 54.0(5.9) 68.6(5.8) 73.8(5.7)

3

LOLIN,S 54.8(3.5) 69.6(3.1) 74.9(3.1)

LOLIN,A (p = 10)

(p = 30)

54.7(4.1)

53.7(3.7)

69.6(3.9)

69.7(3.6)

752(3.8)

75.3(35)

LAIN,S NA NA NA
LAIN,A (p = 30) 53.7(3.7) 682(3.4) 73.7(32)

FCFS,S 61.2(6.6) 76.9(6.1) 81.6(5.9)

FCFS,A 61.2(6.2) 76.9(6.0) 823(5.8)

4

LOLIN,S 55.4(3.6) 70.1(32) 75.3(33)

LOLIN,A (p = 10)

(p = 30)

56.2(4.2)

55.2(3.7)

713(4.1)

702(3.6)

77.0(4.0)

75.9(35)

LA!N,S NA NA NA
LAIN,A (p = 30) 63.9(3.7) 78.4(3.4) 83.8(32)

FCFS,S 68.4(6.8) 84.4(6.1) 903(6.0)

FCFS,A 68.8(6.5) 853(6.2) 90.8(6.0)

5

LOLIN,S 55.9(3.6) 70.6(32) 75.8(33)

LOLIN,A (p = 10)

(p = 30)

575(4.4)

55.7(3.8)

72.9(43)

70.8(3.7)

78.7(42)

76.5(35)

LAIN.S NA NA NA
LAIN,A (p = 30) 74.2(3.7) 885(3.4) 93.9(32)
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EXAMPLE 2: CONFIGURATION AND RATES
(Failure and Repair Rates Differ)

Machines

)•• 1 2 3 4 5

Kfi 100 110 120 130 140

if 0.015 0.020 0.025 0.030 0.035

Vf. 1.0 1.1 1.2 1.3 1.4

Note that in this example the repair rates differ, whereas in the previous

example they were the same. In Table 2 there appear the analytical and

simulated means and standard deviation (parentheses) of the individual

machine availabilities when the FCFS and LAIN service policies are in effect.

TABLE 2. MACHINES AVAILABLE

MACHINES SERVICE DISCIPLINES TIMES
50 100 200

1

FCFS,S 51.5(5.0) 28.9(4.6) 13.9(3.3)

FCFS,A 52.1(5.0) 30.3(4.6) 16.1(3.7)

LAIN,S 51.3(4.7) 245(3.9) 11.7(1.6)

LAIN,A(p = 10) 52.1(4.8) 252(3.9) 11.5(1.7)

2

FCFS,S 46.1(5.0) 22.8(4.5) 11.6(3.3)

FCFS,A 46.5(5.2) 23.6(4.3) 12.5(3.3)

LAIN,S 43.9(4.3) 20.0(2.2) 11.3(1.6)

LAIN,A(p = 10) 44.9(4.4) 202(2.6) 11.1(1.7)

3

FCFS,S 41.0(5.2) 18.6(4.2) 10.7(3.3)

FCFS,A 41.4(5.3) 18.9(4.0) 10.5(3.1)

LA1N,S 40.1(3.4) 19.3(2.5) 11.0(1.7)

LAIN,A (p = 10) 40.2(3.9) 192(2.5) 10.8(1.7)

4

FCFS,S 51.5(5.0) 28.9(4.6) 13.9(3.3)

FCFS,A 52.1(5.0) 303(4.6) 16.1(3.7)

LAIN,S 51.3(4.7) 245(3.9) 11.7(1.6)

LAIN,A (p = 10) 52.1(4.8) 252(3.9) 11.5(1.7)

5

FCFS,S 51.5(5.0) 28.9(4.6) 13.9(3.3)

FCFS,A 52.1(5.0) 30.3(4.6) 16.1(3.7)

LAIN,S 51.3(4.7) 245(3.9) 11.7(1.6)

LAIN,A(p = 10) 52.1(4.8) 252(3.9) 11.5(1.7)
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Discussion

Table 2 indicates that the analytical-numerical and simulation-generated

means and standard deviations again agree reasonably well, even though

individual type failure rates and repair rates differ. The major discrepancies

seem to appear in FCFS discipline comparisons. The qualitative effects noted

earlier are once again evident: generally small standard deviation to mean

ratio (coefficient of variation); larger standard deviation to mean ratio

(coefficient of variation) and larger standard deviation for FCFS than for

LAIN, and a pronounced (an anticipated) tendency for LAIN to equalize the

number of machines available as time advances.

Conclusions

Our conclusion is that asymptotic expressions based on the scaling (3.3)

provide quite adequate approximations to the time-dependent or transient

means and variances for the particular multitype repairman problems

studied. These problems include attention to a variety of dynamic priority or

service-adaptive policies via the device of tailored probabilistic selection of

new service incumbents. Not surprisingly, convergence to the marginal

distribution of an Ornstein-Uhlenbeck process occurs; actual weak

convergence has not yet been demonstrated, but is a likely bonus.
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